
Journal of Engineering Mathematics 22: 253-265 (1988)
© Kluwer Academic Publishers, Dordrecht - Printed in the Netherlands 253

Optimal strength of a flexible high-pressure hose with two
steel braids

C.M.J. HOGENBIRK, B.A. VAN DEN HORN, E.E.R. JAGER* and M. KUIPERS
Department of Mathematics and Computing Science, University of Groningen, P.O. Box 800,
9700 A V Groningen, The Netherlands (*at present with N. V. Nederlandse Gasunie, Groningen)

Received 21 January 1988; accepted 5 February 1988

Abstract. The flexible high-pressure hose we consider in this paper, is a rubber tube reinforced by two steel braids.
Each of the latter consists of two families of thin steel wires which are wound helicoidally around the cylinder.
In order to achieve an optimal strength of the tube, the stresses in the wires of the two braids must be much the
same. We investigate whether this can be accomplished by a proper choice of the braid angles of the two braids.
Throughout this paper we apply a linear theory.

1. Introduction

High-pressure hoses which allow some bending, usually consist of a rubber tube the wall of
which is reinforced by means of one or more steel braids. Thin rubber sheets separate these
braids of which each is composed of thin steel wires. Frequently these wires are gathered up
in two families of flat ribbons that are interwoven along helicoidal lines on the braid
cylinders. The weaving pattern is regular and symmetric (Fig. 1). In this paper we shall
consider this hose type. We define the pitch angle of a braid as the acute angle q0 between
a tangent to a helicoidal curve of a braid and a normal cross-section of the hose. This angle
plays a significant role in what follows.

If we pull at a piece of an isolated braid we note that it gives way rather easily through
a distance of, say, one-sixteenth of its length. It seems to behave as if it were a non-linear
spring, which blocks up at a maximal extension. This flexibility stems from the concertina-
like motion the braid ribbons are able to perform, virtually without any force. The latter
develops as the motion progresses and arises from the constraint that one family of wires
constitutes in relation to the motion of the other one, and vice versa. The pliancy of the braid,
combined with the small stiffness of the rubber tube, accounts for the comparatively great
flexibility of the hose, particularly in bending.

In addition to the demand of a sufficient flexibility, a tube must, of course, be strong
enough. It has to withstand rather high pressures of, say, 300 bars. Obviously it is the steel
reinforcement which carries this load. The contribution of the rubber to the strength is small.
The inner rubber cylinder serves merely to prevent oil from leaking through the gaps between
the steel wires. The outer rubber cylinder protects the tube against mechanical damage from
external agencies. However, the steel wires can be loaded in tension exclusively. This means
that a braid can cope with a specific loading system only. The tangential and axial tensile
stresses have to bear to one another in a certain ratio following from the pitch angle q of
the braid. If this condition is not complied with, the braid will adapt itself more or less to
the load by means of its shearing mechanism. The deformation stops when the new pitch
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Fig. 1. Hose with two steel braids.

angle conforms to the external loading. It is clear that the rubber tubes are compelled to
participate in the distortion. Hence, on these conditions it is to be expected that the rubber
adds slightly to the overall stiffness of the hose, although its contribution to the strength can
be neglected.

When the internal pressure increases, failure of the hose occurs at the so-called burst
pressure. We mention three main causes giving rise to a break-down of a hose. First of all,
the inner rubber tube may be blown through the gaps between the wires of the braids.
Secondly, some wires of a braid rupture as a result of too high tensile stresses and, finally,
fracture of braids and rubber occurs in the immediate neighbourhood of a connection nipple.
The first phenomenon is usually prevented by making the inner rubber cylinder sufficiently
thick and stiff. If one wants to save material by reducing the rubber thickness, then one has
to pay attention to it. The connection between a hose and a nipple, mentioned as the third
item, may be a source of trouble, for a nipple is forged onto a hose end and this process involves
very large permanent deformations of the hose end. Only by means of a careful design of the
nipple, aimed at a transition from the nipple to the hose as smooth as possible, it is feasible
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to avoid unacceptable concentration of stresses in the clamped part of the hose. Experience
shows that bursting of a hose generally results from fracture of some braid wires. From this
it follows that it is of primary importance to try for a uniform spreading of the load over
the various braids when two or more of these are applied. To that end in this paper we
consider a hose with two steel braids. We shall use the same assumptions as in Section 5 of
[1], where we calculated the strains and stresses in a hose with only one braid. This means
that we shall use the theory of thick-walled cylinders for the rubber tubes, whereas the braids
are supposed to be infinitely thin. Furthermore we shall neglect also the mutual obstruction
of the two families of each braid with respect to each others motion.

In our model the intermediate thin rubber sheet transfers a part of the load from the inner
to the outer braid. Hence, it is clear that its thickness and compressibility will play an
important role in this process. Since the thin sheet will tend to fill the voids between the wires
of the braids, it is difficult to obtain a reliable estimate of its effective thickness and
compressibility. In particular, the value of the Poisson's ratio we have chosen is disputable.
However, we shall focus our attention mainly to the effect of variations of the two braid
angles on the spreading of the load over the braids.

2. Mathematical analysis

We refer our analysis to a cylindrical coordinate system r, 9, z (Fig. 2) and consider a tube
consisting of three rubber cylinders. They occupy the regions r, < r < r2, r2 < r < r3 and
r3 < r < r4, respectively. The length of the cylinders does not occur in our calculations
explicitly. The three rubber cylinders are separated by two steel braids at r = r2 and r = r3.
Each steel braid consists of two families of wires, as described in the introduction. The braid
angles at r = r2 and r = r3 are p, and p02, respectively.

In the sequel we apply a linear small-displacement theory and we assume the rubber of the
three cylinders to be Hookean materials with Young's moduli E(') and Poisson's ratio's v).
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Fig. 2. Hose (inner radius r, outer radius r4) with infinitely thin steel braids at r = r2 and r = r, loaded by an
internal pressure q. The braid angle is the pitch angle p.
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Here and in the following we use a superscript i (i = 1, 2, 3), to refer to the inner, middle
and outer cylinder, respectively. The radial displacement is denoted by u(i) and the axial one
by w(i). Neglecting any edge effects, we suppose u(' = u')(r) and w{) = w(2 ) = w(3) = w(z),
so that the axial strain is uniform. Then, according to the well-known theory of thick-walled
cylinders, e.g. see [2], the normal stresses t, t and t~ follow from

du(i) u(i) dw du(')
l dr r + dz3 +2g rr (

lduW u(°) dw 
t? = + [ -r(') - (2.1)r dr'

= (0 du (i ) u(i) dw dw
l dr -+ d + 2 dz i = 1, 2, 3,

where A") and 1(i) are the Lame's parameters. They satisfy the equilibrium equations

d t) ) - dt )__
- + 0, O, i = 1, 2 3. (2.2)
dr r dz

Upon substituting (2.1) into (2.2), the second equation is satisfied identically, while (2.2)'
yields

d2 u(W) 1 du(i) 1
d + r - u = 0, i = 1, 2, 3. (2.3)

The solutions are

B(')
u W = Ar + -, i = 1, 2, 3, (2.4)

where A'( ) and B() are integration constants, which will be determined later on. In the sequel
we will use Young's moduli E(') and Poisson's ratio's v') instead of Pi) and y" applying the
relations

d(i) and E(dt

(1 + vO) )(I - 2v()) 2(1 + i)

Since the radial displacement is continuous at r = r2 and r = r3 we have

u(l)(r2 ) = u(2)(r2 ), U(2 )(r3) = u(3 )(r3 ). (2.5)

Now turning to the braid, we first assume that the wires are inextensible. This means that,
in a linear context,

r + w tan 2 = 0, i = 1, 2. (2.6)
'i~l dz
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Furthermore, the internal forces N, and N2 in the braids, defined as the force in each family
measured per unit of length in a direction perpendicular to the wires in that family, cannot
be derived from a Hooke's law. Hence, they constitute two unknown quantities in addition
to the six constants A(i) and B (i) introduced above. Moreover, the uniform axial strain dw/dz
is not known beforehand. Altogether there are nine quantities to be determined from nine
equations, viz. (2.5), (2.6) and the following conditions

t(t)(r,) = -q, (2.7)

rYi+ft('+l)(ri ) - t)(ri+l)} = 2N cos2 p,, i = 1, 2, (2.8)

t)(r4) = 0, (2.9)

2 3

qirr = 2r E 2ri+N sin2 Pi + 2r E jl T t)() di. (2.10)

The latter equation results from the assumption that the axial force exerted by the fluid in
the tube, is carried completely by the rubber cylinders and the braids. Numerical results will
be given in the following section.

If we drop the inextensibility of the steel wires and assume that they are elastic, the above
analysis can be adjusted easily. The equation (2.6) has to be replaced by

ei = sin2 vi + cos2 (Pi, i = 1, 2, (2.11)
dz ri+1

where ei is the strain in a wire. Subsequently we calculate the force Ni by means of Hooke's
law, yielding

E/di2niei
Ni = 16 ri+l sin 1, 2, (2.12)

in which Ei` = Young's modulus of the steel in braid i, di = the diameter of the wires in
braid i, ni = total number of wires in a cross-section of brain i (total means twice the number
in one family).

The elimination of ei from (2.11) and (2.12) yields an equation which replaces (2.6) in the
above analysis. The other equations remain unchanged.

In the sequel we shall calculate the change Atpi of the pitch angle Pi, i = 1, 2. In the case
of inextensible wires this quantity follows from

dw
Aqi = dz tan pi, i = 1, 2. (2.13)'

dz

For elastic wires we have

A = sin cos i r + dw (2.13)2
ri+l dz
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Finally, in the sequel we are concerned with the force F in each wire of braid i. This
quantity follows from

47ri,+ li sin qpiF ,sin i 1, 2. (2.14)
ni

3. Numerical calculations

The numerical calculations we have performed refer to a specific hose: Trelleborg, type
320/10. Its main dimensions are

r, = 4.75mm, r3 = 8.00mm, d, = 0,3mm,
(3.1)

r2 = 7.00mm, r4 = 9.50mm, d2 = 0,3mm.

The number of wires in a cross-section of the braids is

n, = 140 and n2 = 160. (3.2)

The maximum working pressure retained in the calculations, is q = 33 N/mm2 .
As to the elastic properties of the three rubber cylinders, we know that the value of the

modulus of compression K(2) of the intermediate rubber cylinder is of crucial importance.
Since K(2) = E(2)/[3(1 - 2v(2))] and v2) 1/2, we see that v(2) plays a significant role.

Table 1. Trelleborg hose 320/10

Stresses, strains and displacements for the case:

E
( )

= E
(2)

= E
(3)

= 4N/mm
2
, E, = E = c,

v(' ) = v(3) 0.4997, v(2) = 0.4999, n, = 140, n2 = 160, q = 33 N/mm2 ,
TpI = 33.31

°
, qp2 = 37.08

° .

r ) t( i) e e
(mm) (N/mm 2) (N/mm2 ) (mm)

4.750 - 33.00000 - 32.913 0 0.037 95 - 0.024 79 0.007 99
1 5.875 - 32.985 00 - 32.928 0 0.013 59 - 0.019 11 0.002 31

7.000 - 32.98000 - 32.9360 - 0.005 98 - 0.015 95 0.000 85

7.000 - 13.886 20 - 13.8800 - 0.005 98 - 0.003 21 - 0.000 85
2 7.500 - 13.885 80 - 13.8804 - 0.007 54 - 0.003 05 - 0.001 00

8.000 - 13.885 50 - 13.880 7 - 0.009 04 - 0.002 93 - 0.001 13

8.000 0.00011 - 0.00064 - 0.00904 - 0.000 85 - 0.001 13
3 8.750 0.00005 - 0.000 58 - 0.009 86 - 0.000 87 - 0.001 10

9.500 0.00000 0.000 53 - 0.010 34 - 0.000 89 - 0.001 09

Further relevant data:
e, e,= 0, dw/dz = 0.001 98,
tz) = - 32.929 N/mm 2, t) = - 13.872N/mm 2, () = -0.008 N/mm 2 ,
F, = 33.01 N, F2 = 33.06N,
N, = 95.67 N/mm, N2 = 87.27 N/mm.
Ap = 0.0750, Aqp2 = 0.086°.
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(The values of E('), (1), E (3 ) and v(3) appear to be of little account). In [3] and [4] we have found
some estimates pertinent to v(2). Eventually in this paper the following data have been
retained.

E(') = E (2) = E(3 ) = 4N/mm 2 ,

(3.3)
v(' ) = v3 = 0.4997, v(2) = 0.4999.

Finally, if the steel is assumed to be elastic, we shall use

E = E = 2.1 x 105 N/mm2 . (3.4)

For prescribed values of (p, and (P2 we can solve the linear equations of the preceding
section for the nine unknowns, among which N, and N 2. From these the values of F. and
F2 can be calculated through the use of (2.14). The numerical procedure has been applied
repeatedly in an algorithm in which we varied the values of p, and P2 in a neighbourhood
of the critical pitch angle p, ' 35.260, until

IF, - F21 < 10-'N, (3.5)

after which the process was stopped. From the values p,, (P2 obtained in this way for
inextensible wires, we have singled out the pair

(p = p = 33.310 and (P = 0P2 = 37.08°, (3.6)1

which yields

F, = 33.01N and F2 = 33.06N. (3.6)2

We note that p, < (Pc and (P2 > Pc. The values seem to conform to normal practice in
manufacturing plants. Further we have found

Ap = 0.0750 and A(P2 = 0.086 °. (3.7)

Apparently, qp, rotates towards (Pc, while (P2 turns farther away from it. More details of this
calculation can be found in Table 1.

If we repeat the same computation retaining the same combination of Ac and 'P2, but now
for the case of elastic wires, we arrive at F = 33.24 N and F2 = 32.71 N (Table 2). Obviously,
the effect of the finite steel elasticity is to be neglected as far as the wire forces are concerned.
Moreover, we see that the stresses in the inner cylinder are about hydrostatic and that the
outer cylinder does not matter. This was confirmed by the results of a calculation in which
we omitted the inner and outer cylinders, applying the internal pressure q directly at the inner
braid. This yielded the wire forces F, = 32.93 N and F2 = 33.22 N (Table 3). For the sake
of completeness we mention that for pairs (Pt, (P2 in the immediate neighbourhood of (P,, the
presuppositions elastic or inextensible steel wires do mean large differences of the results.
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Table 2. Trelleborg hose 320/10

Stresses, strains and displacements for the case:

E(' = E(2) = E(3)
= 4N/mm2 , E, = E = 210000N/mm 2, d = d2 = 0.3mm,

v) = v(3) = 0.4997, v(2) = 0.4999, n = 140, n2 = 160, q = 33 N/mm2 ,
p, = 33.31 °, 2p, = 37.08°.

ir~ r~~ t t lr)9 U
(i )

er) o(e)
(mm) (N/mm2) (N/mm 2) (mm)

4.750 - 33.00000 - 32.8691 0.057 37 - 0.037 01 0.012 08
1 5.875 - 32.977 33 - 32.891 7 0.021 01 -0.028 51 0.003 58

7.000 - 32.96468 - 32.9044 - 0.008 16 - 0.023 77 - 0.001 17

7.000 - 13.74428 - 13.7180 - 0.008 16 - 0.011 02 - 0.001 17
2 7.500 - 13.742 50 - 13.7197 - 0.013 50 - 0.010 38 - 0.001 80

8.000 - 13.741 20 - 13.721 1 - 0.018 56 - 0.009 861 - 0.002 32

8.000 - 0.002 12 0.01248 - 0.018 56 - 0.007 80 - 0.002 32
3 8.750 - 0.000 93 0.011 28 - 0.024 23 - 0.007 35 - 0.002 77

9.500 0.00000 0.01034 - 0.029 61 - 0.007 00 - 0.003 12

Further relevant data:
e, = 0.00224, e2 = 0.00220, dw/dz = 0.0101,

-l = 32.874 N/mm2, t = - 13.687 N/mm2, t) = --0.0457 N/mm2 ,
F, = 33.24N, F2 = 33.71 N,
N, = 96.32 N/mm, N2 = 86.34N/mm.
App = 0.29680, Ag 2 = 0.3429° .

Table 3. Trelleborg hose 320/10

Stresses, strains and displacements for the case:

E2 = 4N/mm2 , E = E = oo,
v(2) = 0.4999, n = 140, n2 = 160, q = 33 N/mm2,
p, = 33.31°, (P2 = 37.08°.

i r t? t u
(i )

r er)

(mm) (N/mm2) (N/mm 2) (mm)

4.750 - 33.00000 - 33.0000hydrostatic stresses
1 5.875 - 33.000 00 - 33.000 0 

7.000 - 33.000 00 - 33.000 a

7.000 - 13.955 70 - 13.9494 -0.00600 - 0.003 22 - 0.000 858
2 7.500 - 13.955 30 - 13.9498 - 0.007 58 - 0.003 06 - 0.000938

8.000 - 13.95500 - 13.950 1 -0.00908 -0.00294 -0.001 135

8.000
3 8.750 deleted

9.500 )

Further relevant data:
e, = 0,

t- = 33. N/mm 2, t2 = -13.941 N/mm 2, t?) = -ON/mm 2,
F, = 32.93 N, F2 = 33.22N,
N, = 95.43 N/mm, N2 = 87.70 N/mm.

Next, we have investigated the effect of the compressibility of the rubber used in the
three cylinders for the case of inextensible steel, considered in Table 1. A variation of
v'3) in the neighbourhood of the assumed value 0.4997 did not result in noticeable changes
of the two braid forces. The effect of a modification of v(') and v(2) is shown in Fig. 3 and
Fig. 4, respectively. For the presentation we have used a reduced Poisson ratio (i),
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Fig. 5. The wire forces Fi and F,2 along the line p2 - qP2 = ( - S0p) tan 87.

defined by

v(') = (v( - 0.49900) x 105, i = 1, 2. (3.8)

The effect of v(2) is large, that of v' ) small, as was to be expected.
Our main concern, however, is to see how the wire forces behave when p1 and ¢2 vary

about a couple of prescribed values at which the two forces are much the same. This on

account of the fact that in the manufacturing process it is impossible to avoid small

deviations of the braid angles from specified values. In this relation we have investigated

what happens in the neighbourhood of the pair 5,, ¢2 (3.6)', through which we obtained the

nearly equal forces (3.6)2. We have varied ¢A and ¢2 according to

--- 71 N(3.9)¢2 - P2 = ( - ,) tan (k- 8 t), k = 1,2,... , 8, (3.9)

representing straight lines in the p,, P2 -plane through the point p,, ¢2. Along each of the
eight lines we have calculated F. and F2. It appeared that the fluctuations of these quantities
were much larger for k = 2 to 3, than for the remaining values of k. The smallest deviations
occurred for k - 7. The results for k = 2, 4 and 6 are shown in Figures 5, 6 and 7,

respectively. We note that invariably in the immediate neighbourhood of the pair A, 2 there

exists a second couple presenting coalescent F. and F2 as well.
In view of these unexpected findings we have drawn Fig. 8, showing the difference F, - F2

as a function of "p, and ¢2 about the critical value cp,. We see again that the difference
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Fig. 8. The difference F - F2 as a function of p, and ¢2 in the region cp, - 2.50° < 2 < cp, + 2.50. The dot
denotes the point p, = 2 = p,, where Fl - F2 63 N. The maximum value F - F2 = 830N is attained at
p, = 37.760 and 2 = 37.500, and the minimum -760N at p, = 37.760 and p, = 36.97°.

Fig. 9. The axial strain dw/dz as a function of p, and ¢2 in the region p, - 2.5° < p,.2 < , + 2.5°. The dot
denotes the point p, = p = p,, where dw/dz 9 x 10- 6. The maximum strain dw/dz = +0.90 occurs at

, = 33.020 and p,2 = 33.550, and the minimal strain - 1.14 at p, = 37.760 and ¢2 = 37.23°.

F, - F2 varies little in the second and fourth quadrant of the p,, cp2 -plane ( < p,

(P2 > (Pc and p, > pc, P2 < Cp, respectively). On the contrary, in the first and third
quadrant, i.e., for both angles larger or smaller than the critical value, large fluctuations of
F, - F2 occur. Hence, the pairs p,, P2 have to be taken from the second or fourth quadrant
preferably.
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Apart from the spreading of the load over the braids, the magnitude and the sign of the
axial strain is a matter of some concern to designers of hoses as well. It is known that
additional tensile forces acting at the hose accidentally, are carried mainly by the rubber. In
order to avoid these extra tensile stresses one should try for a positive axial strain, preferably
as small as possible. On the other hand, in the manufacturing process one often wishes this
strain to be negative. Hence, we have plotted the axial strain as a function of qp0 and (P2 in
Fig. 9, again in the neighbourhood of P = 2 = rc,. Comparing this figure with Fig. 8, we
note some similarity. Just like the force difference, the axial strain does not show large
variations in the second and fourth quadrant, while exhibiting strong fluctuations in the
remaining part of the PI, ( 2-plane. However, opposite to the behaviour of the force difference
which shows positive as well as negative oscillations in the first and third quadrants, the large
deviations of the axial strain do not change sign in these regions. We note that they are
positive in the third quadrant, and negative in the first one.

4. Discussion

As mentioned before, the calculations in this paper rest on assumptions and numerical data,
some of which are open to discussion. E.g., we call to mind the assumption of infinitesimally
thin braids and the associated estimate of a "representative" value 0.4999 of the Poisson
ratio v2 of the intermediate rubber layer. Therefore we have to consider the numerical results
with some reservedness. However, we surmise that these shortcomings do not detract from
the somewhat curious findings of Section 3, regarding the most desirable insertion of a pair
9'1, I 2 in the neighbourhood of the critical angle cp, in the A,, 2-plane.

We do not know yet what will happen when finite values of the displacements are accounted
for in a geometrically non-linear theory. Most likely, for values of (po and p2 near to c, the
finite increments Aqp, and A92 will give rise to a substantial departure from the results
following from a linear theory. It seems worth-while to investigate this.
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